Huizhou Yang

Personal Informa	ation	
E-mail: <u>Huizhou.yang@du.edu</u> Tel: 720-212-1500		
Education backg	round	
01/2016-11/2021	University of Denver (DU), Denver	GPA: 3.88
	Doctor of Philosophy in Mechanical Engineering	
09/2013-06/2015	University of Denver (DU), Denver	GPA: 3.75
	Master of Science in Mechanical Engineering	
Work Experience	e	
Research Assistant		
Center for Orthopaedic	Biomechanics, University of Denver	Sept. 2016 – Nov. 2021
Postdoctoral Resear	rcher	
Center for Orthopaedic Biomechanics, University of Denver		Dec. 2021 - Present
Research Experi	ence	
Application of finite	e element analysis in orthopaedics	
Center for Orthopaedic	Biomechanics, University of Denver	
Faculty advisor: Paul Rullkoetter		Jan. 2016 – Present
• Develop and validation	te computational models for experiment devices, impla	nts, specimens, and human tissues
• Simulate post-operative lower limb activities and study the influence of implants on joint related parameters		
• Test implant design	s and prototypes under physiological conditions and giv	ve suggestions for improvement
• Answer surgeons' c	oncerns by testing potential surgical plans and techniqu	ae concepts
Implant stability aft	ter knee arthroplasty	
<i>Center for Orthopaedic</i>	Biomechanics, University of Denver	
Faculty advisor: Paul Rullkoetter Dec. 2018 – Prese		
• Develop experimental-computational frameworks for evaluating TKA/UKA implant stability		
• Develop UKA models that include bones, implants, cartilages, and soft-tissues for evaluating implant designs		
• Investigate the impa	act of TKA factors on bone remodeling and cementless	implant-bone micromotion
Compare the implant stability between novel cementless TKA/UKA designs		
Implant stability af	ter hip arthroplasty	

Center for Orthopaedic Biomechanics, University of Denver Faculty advisor: Paul Rullkoetter, Chadd Clary

- Develop experimental-computational frameworks for evaluating hip implant stability
- Compare the implant stability and bone strain energy density between novel designs

Thermal Elastic Instabilities in Automotive System

Department of Mechanical Engineering, University of Denver

Dec. 2022 - Present

Faculty Advisor: Yunbo Yi

- Researched in Thermal problems in automotive systems
- Applied simulation software to research TI problems

Research Publications

Yang H, Bayoglu R, SharifiRavani M, Behnam Y, Navacchia A, Clary CW, Rullkoetter PJ. 2020. Validation and sensitivity of model- predicted proximal tibial displacement and tray micromotion in cementless total knee arthroplasty under physiological conditions. J. Mech. Behav. Biomed. Mater. 109:103793.

Yang H, Bayoglu R, Clary CW, Rullkoetter PJ. 2021. Impact of surgical alignment, tray material, PCL condition, and patient anatomy on tibial strains after TKA. Med. Eng. Phys. 88:69–77.

Yang H, Bayoglu R, Clary CW, Rullkoetter PJ. 2022. *Impact of patient, surgical, and implant design factors on predicted tray-bone inferface micromotions in cementless total knee arthroplasty.* J. Orthop. Res. 1-15.

Yang H, Behnam Y, Clary CW, Rullkoetter PJ. 2022. Drivers of initial stability in cementless TKA: Isolating effects of tibiofemoral conformity and fixation features. J. Mech. Behav. Biomed. Mater. 136:105507

Zhao J, Chen Z, **Yang H**, Yi Y. 2016. *Finite element analysis of thermal buckling in automotive clutch plates*. Journal of Thermal Stresses. 39: 77-89.

Conference Presentations

Yang H, Bayoglu R, SharifiRavani M, Behnam Y, Navacchia A, Clary CW, Rullkoetter PJ. *Validation of modelpredicted proximal tibial displacement and tray micromotion in cementless TKA*. 32nd International Society for Technology in Arthroplasty, Toronto, October 2019.

Yang H, Bayoglu R, Clary CW, Rullkoetter PJ. Impact of surgical alignment, tray material, PCL condition, and patient anatomy on proximal tibial strains after cemented TKA. 32nd International Society for Technology in Arthroplasty, Toronto, October 2019.

Han X, **Yang H**, Clary CW, Rullkoetter PJ. *Validation of model-predicted cementless patella displacements during lunge*. 32nd International Society for Technology in Arthroplasty, Toronto, October 2019.

Yang H, Bayoglu R, Clary CW, Rullkoetter PJ. Impact of alignment variation and activity on tray-bone interface micromotion in cementless TKA. Orthopaedic Research Society, Phoenix, February 2020.

Yang H, Behnam Y, Clary CW, Rullkoetter PJ. Drivers of initial stability in cementless TKA: Isolating effects of tibiofemoral articulation and fixation features from current implants. 33rd International Society for Technology in Arthroplasty, Maui, September 2022.

Han X, Yang H, Navacchia A, Clary CW, Rullkoetter PJ. *Evaluating the initial stability in cementless patellar implant during a single-leg lunge*. 33rd International Society for Technology in Arthroplasty, Maui, September 2022.

Yang H, Marras D, Clary CW, Rullkoetter PJ. *Impact of implant alignment, bone material, and implant design factors on the primary fixation stability in cementless unicompartmental knee replacement.* 33rd International Society for Technology in Arthroplasty, Orthopaedic Research Society, Dallas, February 2023.

Skills and Abilities

ABAQUS, Hypermesh, ScanIP, Python, Matlab, Solidwork, Inkspace, OriginPro, finite element modeling, finite element analysis, statistical analysis